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Combine convenience sample with reference sample

I Improve estimation efficiency with convenience sample
I Non-probability sample inexpensive and easily accessible

I Often has a lot more units than reference probability sample

I Treat convenience sample as from latent random sampling
mechanism:
I Estimate latent inclusion probabilities, πc(xi)

I Use overlap of predictor values (xci,xri) and known
reference sample πr(xi)

I Reference and convenience samples may overlap units

I Exclude convenience units that inflate estimator variance
I Remove convenience units very different from reference

I xci values very different from xri
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Terminology

I Sc and Sr observed convenience and reference samples

I Population frames Uc and Ur

I Target population U0, such that Uc ⊆ U0 and Ur ⊆ U0.

I Known coverage probabilities of U0 by frames Uc and Ur
I pc (xi) = P

{
i ∈ Uc|i ∈ U0,xi

}
pr (xi) = P

{
i ∈ Ur|i ∈ U0,xi

}
I inclusion probabilities into Sc and Sr

I πc (xi) = P {i ∈ Sc|i ∈ Uc,xi}
πr (xi) = P {i ∈ Sr|i ∈ Ur,xi}

I Consider combined sample, S = Sc + Sr.

I Indicator zi = 1 when i ∈ Sc, and zi = 0 when i ∈ Sr
I πz(i) = P {i ∈ Sc | i ∈ S,xi} → propensity scores
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Proposition: The following relationship holds:

πz (xi) =
πc (xi) pc (xi)

πc (xi) pc (xi) + πr (xi) pr (xi)
.

Proof: two copies of U0: U = U0 + U0.

P {i ∈ Sc|i ∈ U,xi} = P{i∈Sc|i∈Uc,i∈U0,xi}P{i∈Uc|i∈U0,xi}P{i∈U0|i∈U}

=
1

2
πc (xi) pc (xi)

Similarly, P {i ∈ Sr|i ∈ U,xi} = 1
2πr (xi) pr (xi).
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Hence, for units in S = Sr + Sc, we have

P {i ∈ S|i ∈ U,xi} = P {i ∈ Sc|i ∈ U,xi}+ P {i ∈ Sr|i ∈ U,xi}

=
1

2
πc (xi) pc (xi) +

1

2
πr (xi) pr (xi) .

By definition of conditional probability,

P {i ∈ Sc|i ∈ S, i ∈ U,xi} =
P {i ∈ Sc|i ∈ U,xi}
P {i ∈ S|i ∈ U,xi}
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Exact Likelihood Method when Uc = Ur

I Same Population Frame for each sampling arm

I pc(xi) = P (i ∈ Uc | i ∈ U0) = pr(xi)

πz (xi) =
πc (xi)

πc (xi) + πr (xi)

I Produces exact likelihood for observed data
zi ∼ Bernoulli(πz(xi)), which allows to implicitly estimate
parameters of πc(xi, β)

I Elliot, 2009 derived the same formula assuming no-overlap
between samples

I Sc and Sr may be overlapping
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Joint model for [(zi), (πri)i∈Sr ]
1. Parameterize our model using π`i = P {i ∈ S` | i ∈ U`,xi}.

I Unit i ∈ 1, . . . , (n = nr + nc)

I Sampling arm ` ∈ (r, c)

I Estimate (π`i) for all units for both ` = r and ` = c

2. logit(π`i) = µx,`i = xiγx,` +
∑K

k=1 g(xki)β`k
I B-spline basis for each predictor where C × 1, g(xki), with

C = knots + spline degrees - 1

I Autoregressive smoothing of the C × 1, β`k

I Sparsity over K predictors with β`kc ∼ N (β`kc−1, κ`kτ`)

3. Joint likelihood for [(zi), (πri)i∈Sc ]
I zi | πzi

ind∼ Bernoulli(πzi)

I logit(πri)
ind∼ N (µx,ri, φ) only for units i ∈ Sr



11/ 22

Outline

Motivation

Methods

Bayesian Hierarchical Model

Simulation Performance Study



12/ 22

Compare Exact and Pseudo Likelihood Methods

I Exact Likelihood Methods (Bayesian Implementation)
I Two-arm option:

(Sc, Sr) : πz(xi) = πc(xi)/ (πc(xi) + πr(xi))

I One-arm option: (Sc, U)→ πr(xi) = 1: πz (xi) =
πc(xi)
πc(xi)+1

I One-arm gold standard since know whole population of X.

I Pseudo Likelihood Methods (Bayesian Implementation)
I Competitors define likelihood on population indicator

I Approximate on observed sample using weights ∝ 1/πr(xi)

I Chen, P. Li, and Wu (2020)(LCW) specify Bernoulli (πc(xi)) for pop

I Wang, Valliant, and Y. Li (2021) (WVL) specify Bernoulli (πz(xi)) for
pop - same as One-arm
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Data Generation Process

I We generate M = 30 distinct populations of size N = 4000.

I Let X have K = 5 predictors (one continuous)

I Outcome yi has a lognormal distribution
log(yi) ∼ N (xiβ, 2).

I We chose a large sampling fractions to explore the full
range of πc ∈ [0, 1] (establishment surveys).
I Select reference sample of nr = 400 using PPS sampling:

sri = log(exp(xiβ) + 1)

I Select two convenience samples of nc ≈ 800 using Poisson
sampling: πci = logit−1(xiβc + offset)

I We control ‘high’ and ‘low’ overlap by varying βc compared
to the reference sample (next slide)
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High and Low Overlap of Xr and Xc Datasets
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Figure: πc versus πr LHS high overlap and RHS low overlap.



15/ 22

Higher Percent of Pooled Sample in High Overlap
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Two-arm Method is More Efficient
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Figure: Avg and 95% frequentist quantiles for posterior mean of πc .
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Coverage degrades for pseudo likelihood options
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Application to Estimation of Government Employment

I Estimate pseudo weights for quota sample of government
employment.

I Use census instrument as reference sample; we set
πri = 1 for all units

I We observe: z = 1 for units in the quota sample and z = 0
for units in the census.

I Quota sample units are a subset of census.

I Estimate πc (xi) of inclusion into the quota sample, where
xi is employment level of unit i

I Produce employment estimates for Metropolitan Statistical
Areas (MSAs).
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Pseudo Weighted Link Relative Estimator (WLR)

Ŷd,12 = Yd,0

12∏
τ=1

R̂d,τ .

I Starting level, Yd,0, available from census at end of year

I Monthly ratio estimates R̂d,τ are obtained using a link
relative (LR) estimator

R̂LRd,τ =
∑
i∈sd,τ

yi,τ/
∑
i∈sd,τ

yi,τ−1

I We fear LR induces bias by use of unweighted (yi,τ−1, yi,τ ).
I So, use a weighted LR estimator.

R̂WLR
d,τ =

∑
i∈sd,τ

wiyi,τ/
∑
i∈sd,τ

wiyi,τ−1
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Estimations for Selected MSAs
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Future Work

I Joint estimation of (πc, y).

I Create efficient survey estimator for domains.

I Incorporates full uncertainty quantification.
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